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Abstract—This technical note addresses state estimation of
systems subject to switching unknown exogenous inputs and
injection of false measurements. The random set paradigm is
adopted in order to model, via Random Finite Sets (RFSs), the
switching nature of the unknown input, which at each instance
can be operating or not, as well as the uncertainty arising
from the possible reception of extra false packets through the
communication network. The problem of jointly detecting the
unknown input and estimating the system state in the presence
of random false measurements is then formulated and solved in
the Bayesian framework leading to the analytical derivation of a
hybrid Bernoulli filter that updates in real-time the joint posterior
density of the unknown input Bernoulli RFS and of the state
vector. The effectiveness of the developed tools for joint input
detection and resilient state estimation is tested by simulating a
cyber-physical attack on a standard IEEE power network.

Index Terms—Cyber-physical systems; Bayesian state estima-
tion; Bernoulli filter; extra packet injections; random finite sets.

I. INTRODUCTION

Due to its application to a wide range of real-world prob-
lems (such as fault detection and diagnosis, weather forecast-
ing, tracking of maneuvering targets, etc.) state estimation
in the presence of unknown inputs has been an area of
intensive study over the last decades for both linear and
nonlinear systems under different assumptions (e.g., see [1]–
[6] and references therein). However, all this previous work
is focused on jointly estimating the state and the unknown
input under the assumption that the exogenous signal is always
present, without considering the more challenging case of a
switching external input, that at each time instant may or may
not exist. This switching behavior seems to be, nowadays
more then ever, appropriate to model unknown exogenous
inputs that may represent, not only genuine faults/failures
on the physical infrastructure, but also anomalous or even
malicious activity (e.g. cyberattacks) affecting the computa-
tion and communication layers, i.e. any off-nominal behavior
involving abnormal events that modern engineered systems
must be able to detect, understand and, possibly, overcome
in order to ensure reliability and security. Indeed, it is evident
that next-generation cyber-physical systems (CPSs) integrating
computation, communication, and physical components, will
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be inevitably more vulnerable and prone to different types
of misbehavior, unexplained by the available nominal models,
against which they need to be resilient.

In the context of security of CPSs, preliminary studies
addressed the problem of attack detection/identification for
deterministic control systems [7] by modeling attacks as
unknown inputs. Secure strategies have been studied for replay
attacks [8], [9] where the adversary first records and then re-
plays the observed data, as well as for denial-of-service (DoS)
attacks [10], [11] disrupting the flow of data. Furthermore,
active detection methods have been designed in order to reveal
stealthy attacks via manipulation of e.g. control inputs [12] or
dynamics [13]. In recent times, the problem of resilient state
estimation, i.e. capable of reconstructing the state of the CPS
even in the face of some misbehavior or attack, has gained
considerable attention [14]–[22]. Initial work considered a
worst-case approach for the special family of SISO systems
[14]. Under the assumption of linear systems subject to an
unknown but bounded number of false-data injection attacks
on sensor outputs, the problem for a noise-free system has
been cast into an `0−optimization problem, which can be
relaxed as a more efficient convex problem [15], and, in turn,
adapted to systems with bounded noise [16]. Further advances
tried to tackle the combinatorial complexity of the problem by
resorting to satisfiability modulo theories [17] and investigated,
in the same context, the case of Gaussian measurement noise
[18] and the concept of observability under attacks [19].
Deterministic models of different attack policies have been
presented based on adversary’s resources and system knowl-
edge [20], and resilient strategies have been proposed for noisy
systems with direct feedthrough under both data injection and
switching mode attacks [21]. Most recently, in [22] resilient
state estimation of CPSs has been addressed by modeling
in a stochastic framework the attacker’s decision-making by
assuming Markov (possibly uninformative) decision processes
instead of unknown or worst-case models.

The present paper aims to address the problem of simultane-
ously detecting an unknown input while estimating the state of
the system, in the presence of possible extra packet injections,
i.e. multiple false observations (junk packets) added to the
system-generated measurement in order to confuse the system
monitor and create uncertainty about the origin of the received
packets. This is a new type of man-in-the-middle attack against
state estimation, already introduced in information security
(see, e.g., [23], [24]), that can be captured by the proposed
modeling framework. A random set approach is undertaken by
representing the exogenous input presence/absence by means
of a Bernoulli random set (i.e. a set that, with some probability,
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can be either empty or a singleton depending on the presence
or not of the external input) and by taking into account the
possible injection of a random number of false packets by
means of a measurement RFS. The joint input detection-state
estimation problem is then formulated within the Bayesian
framework as the recursive determination of the joint posterior
density of the unknown input Bernoulli set and of the state
vector at each time given all the measurement sets available up
to that time. Strictly speaking, the posed Bayesian estimation
problem is neither standard [25] nor Bernoulli filtering [26]–
[29] but is rather a hybrid Bayesian filtering problem that aims
to jointly estimate a Bernoulli random set for the unknown
input and a random vector for the system state. An analytical
solution of the hybrid filtering problem is found in terms of
integral equations that generalize the Bayes and Chapman-
Kolmogorov equations for the solution of joint input-and-state
estimation (where, in this case, the external input is switching),
and of the Bernoulli filter (for a system with unknown inputs).
Preliminary results on this topic were presented in [30].

II. PROBLEM SETUP AND PRELIMINARIES

A. System description and input model

Let the discrete-time cyber-physical system of interest be
modeled by

xk+1 =

{
f0k (xk) + wk, nominal

f1k (xk, ak) + wk, off-nominal
(1)

where: k is the time index; xk ∈ Rn is the state vector to be
estimated; ak ∈ Rm is an unknown exogeneous input affecting
the system only when it is under off-nominal behavior. For
instance, like in the simulation example of Section IV, ak can
model the effect of a non-strategic attack against the cyber-
physical system, able to corrupt sensor/actuator data; f0k (·) and
f1k (·, ·) are known state transition functions that describe the
system evolution in the nominal and, respectively, off-nominal
cases; wk is a random process disturbance also affecting the
system.

For monitoring purposes, the state of the above system is
observed through the measurement model

yk =

{
h0k(xk) + vk, nominal

h1k(xk, ak) + vk, off-nominal
(2)

where: h0k(·) and h1k(·, ·) are known measurement functions
that refer to the nominal and, respectively, off-nominal cases;
vk is a random measurement noise. It is assumed that the
measurement yk is actually delivered to the system monitor
with probability pd ∈ (0, 1], where the non-unit probability
might be due to a number of reasons (e.g. temporary denial
of service, packet loss, sensor inability to detect or sense
the system, etc.). For ease of presentation, we consider the
case of a direct feedthrough from the unknown input to the
output vector by assuming that, for the off-nominal output
function, the Jacobian ∂h1k(x, a)/∂a has full rank. However,
the proposed approach could be extended also to account
for an output function h1k depending only on some of the
components of the vector ak, by considering a one time unit

delay in the estimation of the part of unknown input not
entering directly into the function h1k (see Section 4 of [4]).
Further, while only the case of a single model of unknown
input is taken into account here, multiple models [21] could
be accommodated in the considered framework by letting (1)-
(2) depend on a discrete variable, say νk, which specifies the
particular input model and has to be estimated together with
ak. Following [4], hereafter, the unknown input {uk} is treated
as a white process, independent of x0, {wk} and {vk}, so as
to model the fact that we cannot predict the value of ak from
the values of xk and al, with l < k.

Besides the system-originated measurement yk in (2), it is
assumed that the system monitor might receive extra false
measurements from, e.g., some cyber-attacker, which is able to
send to the monitor one or multiple counterfeit measurements
indistinguishable from the system-originated one (e.g. with
same ID and timestamp). For the subsequent developments, it
is convenient to introduce the input set at time k, Ak, which
is either equal to the empty set if the system is under nominal
behavior at time k or to the singleton {ak} otherwise, i.e.

Ak =

{
∅, if the system is under nominal behavior
{ak}, otherwise.

It is also convenient to define the measurement set at time k,
Zk, which in the presence of extra packet injections can be
written as the union of two disjoint sets, i.e.

Zk = Yk ∪ Fk (3)

where

Yk =

{
∅, with probability 1− pd
{yk}, with probability pd

(4)

is the set of system-originated measurements and Fk the finite
set of false measurements.

The aim of this paper is to address the problem of joint
input detection and state estimation, which amounts to jointly
estimating, at each time k, the state xk and the input RFS Ak

given the set of measurements Zk 4= ∪ki=1Zi up to time k.

B. Joint input and state estimation

In this section we review the formulation of the Joint
Input and State Estimation (JISE) problem in the Bayesian
framework [4]. To this end, let us consider a system with
direct feedthrough of the form{

xk+1 = f(xk, uk) + wk

yk = h(xk, uk) + vk
(5)

where uk is the unknown input vector. The goal of stochastic
Bayesian filtering is to recursively estimate the time-varying
posterior PDF of the unknown variables conditioned on all
the information available up to that time. Hence, when the
objective is the simultaneous input and state estimation, at each
time instant k, the estimates of uk and xk can be obtained by
solving the following problem.

JISE problem: For the system (5), given the measurement
set yk = {y1, y2, . . . , yk}, sequentially compute the joint
conditional PDF p(uk, xk|yk) from p(uk−1, xk−1|yk−1).

2



Assuming that the initial density p(x0) is given, the solution
can be described as a two-step procedure of prediction and
correction. Let p(uk−1, xk−1|yk−1) denote the posterior PDF
at k − 1. The prediction step computes the conditional PDF
p(xk|yk−1) via the Chapman-Kolmogorov equation:

p(xk|yk−1) =

∫∫
p(xk|uk−1, xk−1) (6)

× p(uk−1, xk−1|yk−1) duk−1dxk−1

Then, at time instant k, the observed output yk is available
and can be used to update p(xk|yk−1) and jointly estimate
the conditional PDF of uk, since yk is the first measurement
containing information about the unknown signal. The correc-
tion step can then performed by applying the Bayes rule:

p(uk, xk|yk) =
p(yk|uk, xk) p(xk|yk−1) p(uk)

p(yk|yk−1)
(7)

Notice that, in (7), p(uk) is a PDF summarizing the prior
knowledge on the input uk. When no information on the
unknown input uk is supposed to be available, p(uk) can
be taken as an uninformative (flat) prior1 so that (7) can be
rewritten as

p(uk, xk|yk) =
p(yk|uk, xk) p(xk|yk−1)∫ ∫
p(yk|u, x) p(x|yk−1) dx du

(8)

With the derived Bayesian solution to JISE in the presence
of direct feedthrough, optimal (with respect to any criterion)
point estimates of the input and state can be obtained from
this PDF. For instance, maximization of (8) with respect to xk
and uk provides a Joint MAP-ML (Maximum A-Posteriori
Maximum Likelihood) estimate of xk and uk, respectively
[31]. This is a standard approach to address in a unitary
framework the estimation of both stochastic quantities (in the
considered setting, the system state) and uncertain parameters
(the unknown input), without the need of any underlying
model for the mechanism generating the latter [32].

C. Random set estimation
An RFS (Random Finite Set) X over X is a random variable

taking values in F(X), the collection of all finite subsets of
X. The mathematical background needed for Bayesian random
set estimation can be found in [27]; here, the basic concepts
needed for the subsequent developments are briefly reviewed.
From a probabilistic viewpoint, an RFS X is completely
characterized by its set density f(X ), also called FISST (FInite
Set STatistics) probability density. In fact, given f(X ), the
cardinality probability mass function ρ(n) that X have n ≥ 0
elements and the joint PDFs f (x1, x2, . . . , xn|n) over Xn

given that X have n elements, are obtained as follows:

ρ(n) =
1

n!

∫
Xn

f({x1, . . . , xn}) dx1 · · · dxn

f (x1, x2, . . . , xn|n) =
1

n! ρ(n)
f({x1, . . . , xn}).

1When the unknown input uk takes value in a bounded domain U an
uninformative prior is simply the uniform distribution over U. Such a choice
is rooted in the so-called principle of indifference. When instead U is not
bounded, the concept of uninformative prior has to be understood in a
generalized sense as the (generalized or improper) distribution for which (8)
holds.

In order to measure probability over subsets of X or compute
expectations of random set variables, Mahler [27] introduced
the notion of set integral for a generic real-valued function
g(X ) of an RFS X as∫

g(X ) δX = g(∅) +

∞∑
n=1

1

n!

∫
g({x1, . . . , xn}) dx1 · · · dxn

(9)
In particular, in this work we will consider the Bernoulli
RFS, i.e. a random set which can be either empty or, with
some probability r ∈ [0, 1], a singleton {x} whose element is
distributed over X according to the PDF p(x). Accordingly,
its set density is defined as follows:

f(X ) =

{
1− r, if X = ∅
r · p(x), if X = {x}

(10)

III. BAYESIAN RANDOM SET FILTER FOR JOINT INPUT
DETECTION AND STATE ESTIMATION

Let the unknown input at time k be modeled as a Bernoulli
random set Ak ∈ B(A), where B(A) = ∅ ∪ S(A) is a set of
all finite subsets of the unknown input space A ⊆ Rm, and
S denotes the set of all singletons (i.e., sets with cardinality
1) {a} such that a ∈ A. Further, let X ⊆ Rq denote the
Euclidean space for the system state vector, then we can define
the Hybrid Bernoulli Random Set (HBRS)

4
= (A, x), as a new

state variable which incorporates the input Bernoulli random
set A and the random state vector x, taking values in the
hybrid space B(A) × X. A HBRS is fully specified by the
probability r of A being a singleton (i.e., of unknown input
existence), the PDF p0(x) defined on the state space X, and
the joint PDF p1(a, x) defined on the joint space A× X, i.e.

p(A, x) =

{
(1− r) p0(x), if A = ∅

r · p1(a, x), if A = {a}
. (11)

Moreover, since integration over B(A)× X takes the form∫
B(A)×X

p(A, x)δA dx =

∫
p(∅, x) dx+

∫∫
p({a}, x) da dx

(12)
where the set integration with respect to A is defined ac-
cording to (9) while the integration with respect to x is
an ordinary one, it is easy to see that p(A, x) integrates to
one by substituting (11) in (12), and noting that p0(x) and
p1(a, x) are conventional probability density functions on X
and A×X, respectively. This, in turn, guarantees that (11) is
a FISST probability density for the HBRS (A, x), which will
be referred to as hybrid Bernoulli density throughout the rest
of the paper.

A. Measurement model and correction

Let us consider the extra packet injection model introduced
in Section II-A, for which the measurement set defined in (3)
is given by the union of two independent random sets. As it is
clear from (4), Yk is a Bernoulli random set (with cardinality
|Yk| at most 1) which depends on whether the system-
originated measurement yk is delivered or not. Conversely,
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no prior knowledge on the cardinality distribution ρ(n) of the
random set Fk of false measurements is assumed. This means
that ρ(n) is taken as an uninformative distribution and, hence,
the FISST PDF of false-only measurements can be written as

γ(Fk) ∝ |Fk|!
∏

yk∈Fk

κ(yk) (13)

where κ(yk) is a PDF describing the prior knowledge on the
distribution of false measurements on the measurement space
Y. Clearly, if no prior knowledge on such a distribution can be
assumed, κ(yk) can be taken as an uninformative (i.e. uniform)
PDF over Y (see also the discussion in Section II-A). The
following result holds.

Lemma 1: Let the cardinality of Zk, i.e. the number of
received measurements, be equal to n. Then, the likelihood
function λ(Zk|Ak, xk) can be written as

λ(Zk|Ak, xk) =


γ(Zk)

[
1− pd + pd

n

∑
yk∈Zk

`(yk|xk)
κ(yk)

]
if Ak = ∅

γ(Zk)
[
1− pd + pd

n

∑
yk∈Zk

`(yk|ak,xk)
κ(yk)

]
if Ak = {ak}

(14)
Proof: Let us first introduce the following FISST PDFs for
Ak = ∅ and, respectively, Ak = {ak}:

η(Yk|∅, xk) =

{
1− pd, if Yk = ∅

pd `(yk|xk), if Yk = {yk}
(15)

η(Yk|{ak}, xk) =

{
1− pd, if Yk = ∅

pd `(yk|ak, xk), if Yk = {yk}
.

(16)
Then, using the convolution formula [27, p. 385], one has

λ(Zk|Ak, xk) =
∑
Yk⊆Zk

η(Yk|Ak, xk) γ(Zk \ Yk). (17)

Hence, the likelihood corresponding to Ak = ∅ is given by

λ(Zk|∅, xk) = η(∅|∅, xk) γ(Zk)

+
∑

yk∈Zk

η({yk}|∅, xk) γ(Zk \ {yk}) . (18)

Observe now that, in view of (13), we have

γ(Zk \ {yk}) =
γ(Zk)

nκ(yk)
(19)

and, hence, λ(Zk|∅, xk) can be rewritten as in (14). Similarly,
for Ak = {ak} we have

λ(Zk|{ak}, xk) = η(∅|{ak}, xk) γ(Zk)

+
∑

yk∈Zk

η({yk}|{ak}, xk) γ(Zk \ {yk}) (20)

which can be rewritten as in (14) by exploiting again (19).
Notice that the first term on the RHS of (20) accounts for
the case of no system-originated measurement, i.e. Fk = Zk,
while the subsequent term in the summation considers the
union of disjoint events that one observation of Zk is authentic
and the rest are false measurements, i.e. Fk = Zk \ {yk} for
any yk ∈ Zk. �

Using the measurement model of Lemma 1, exact correction
equations of the Bayesian random set filter for joint input
detection and state estimation with extra packet injections are
obtained as follows.

Theorem 1: Suppose that the prior density at time k is hybrid
Bernoulli of the form

p(Ak, xk|Zk−1) =

{
(1− rk|k−1) p

0
k|k−1(xk), if Ak = ∅

rk|k−1 · p1k|k−1(ak, xk), if Ak = {ak}
.

(21)
Then, given the measurement random set Zk defined in (3),
also the posterior density at time k turns out to be hybrid
Bernoulli of the form

p(Ak, xk|Zk) =

{
(1− rk|k) p0k|k(xk), if Ak = ∅

rk|k · p1k|k(ak, xk), if Ak = {ak}
(22)

completely specified by the triplet

rk|k =
1− pd (1− 1

nΓ1)

1− pd[1− 1
n (Γ0 − rk|k−1Γ)]

rk|k−1 (23)

p0k|k(xk) =

1− pd + pd

n

∑
yk∈Zk

`(yk|xk)

κ(yk)

1− pd (1− 1
nΓ0)

p0k|k−1(xk) (24)

p1k|k(ak, xk) =

1− pd + pd

n

∑
yk∈Zk

`(yk|ak, xk)

κ(yk)

1− pd (1− 1
nΓ1)

p1k|k−1(ak, xk)

(25)

where

Γ0
4
=
∑

yk∈Zk

∫
`(yk|xk) p0k|k−1(xk) dxk

κ(yk)
(26)

Γ1
4
=
∑

yk∈Zk

∫∫
`(yk|ak, xk) p1k|k−1(ak, xk) dakdxk

κ(yk)
(27)

and Γ
4
= Γ0 − Γ1.

Proof: The correction equation of the Bayes random set filter
for joint input detection and state estimation follows from a
generalization of (7), which yields

p(Ak, xk|Zk) =
λ(Zk|Ak, xk) p(Ak, xk|Zk−1)

p(Zk|Zk−1)
(28)

where λ(Zk|Ak, xk) is given by (18) and (20), while

p(Zk|Zk−1) =

∫∫
λ(Zk|Ak, xk) p(Ak, xk|Zk−1) δAkdxk

=

∫
λ(Zk|∅, xk) p(∅, xk|Zk−1) dxk

+

∫∫
λ(Zk|{ak}, xk) p({ak}, xk|Zk−1) dakdxk.(29)

By using (18)-(20) and (21), and simply noting that∫
p0k|k−1(xk)dxk = 1 and

∫∫
p1k|k−1(ak, xk) dakdxk = 1,

(29) leads to

p(Zk|Zk−1) = γ(Zk)

[
1− pd +

pd
n

(Γ0 − rk|k−1Γ)

]
. (30)
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For the case Zk = ∅, the above reduces to

p(∅|Zk−1) = 1− pd (31)

The posterior probability of unknown input existence rk|k can
be obtained from the posterior density (28) with Ak = ∅ via

rk|k = 1−
∫
p(∅, xk|Zk) dxk (32)

where - using (18), (21) and (31) in (28) - we have

p(∅, xk|Zk) = (1− rk|k−1) p0k|k−1(xk). (33)

Moreover, p0k|k(xk) = p(∅, xk|Zk)/(1 − rk|k), and the joint
density for the system under off-nominal behavior can be
easily derived from the posterior density with Ak = {ak}
by recalling that p1k|k(ak, xk) = p({ak}, xk|Zk)/rk|k, where

p({ak}, xk|Zk) = rk|k−1 · p1k|k−1(ak, xk) (34)

results from replacing (20), (21) and (31) in (28). Notice that
from the set integral definition (9), and densities (33)-(34), it
holds that

∫
p(∅, xk|Zk) dxk +

∫∫
p({ak}, xk|Zk) dakdxk =

1. Hence, as stated, the Bayes correction (22) provides a hybrid
Bernoulli density.

Next, for the case Zk = {yk}, by substituting (18), (21) and
(30) in (28), one gets p(∅, xk|Zk) which, in turn, is used to
obtain (23) through (32). Once rk|k is known, (24) and (25)
easily follow as shown above for the case Zk = ∅.

From Theorem 1, it is evident that if pd = 1 and rk|k−1 =
1, then rk|k = 1 follows from (23). Moreover, if we further
assume that no false measurements are collected at time k, i.e.
Zk = {yk}, then (25) simplifies to the standard Bayes filter
correction of the JISE problem (7). In an analogous way, if
rk|k−1 = 0, first we obtain rk|k = 0, then, from (24), the
standard Bayes filter correction for an input-free system:

p0k|k(xk) =
`(yk|xk) p0k|k−1(xk)∫
`(yk|xk) p0k|k−1(xk) dxk

. (35)

B. Dynamic model and prediction

Let us next introduce the dynamic model of the HBRS
(A, x) essential to derive the prediction equations. To this end,
it is reasonable to assume that the joint transitional density of
(A, x) at time k + 1 takes the form

π(Ak+1, xk+1|Ak, xk) = π(xk+1|Ak, xk)π(Ak+1|Ak)
(36)

which ensues from considering the unknown input as indepen-
dent of the system state, as supposed in Section II-B. Such an
assumption is motivated by the fact that ak+1 may assume all
possible values, being completely unknown (we consider the
most general model for exogenous signals where any value
can be injected, e.g., via the compromised actuators/sensors).
Clearly, in accordance with (1), we have

π(xk+1|Ak, xk) =

{
π(xk+1|xk), if Ak = ∅

π(xk+1|ak, xk), if Ak = {ak}
(37)

where π(xk+1|xk) and π(xk+1|ak, xk) are known Markov
transition PDFs.

Concerning instead the transitional density π(Ak+1|Ak), it is
reasonable to assume that the presence of an unknown input
at time k + 1 is more probable when it is already present at
time k. Accordingly, we can assume that: in the case of a
system under normal operation at time k, an unknown input
ak+1 will enter into action during the sampling interval with
probability pb; if instead the system is already under off-
nominal behavior (i.e., Ak is a singleton), it is supposed that
the exogenous action will endure from time step k to time
step k + 1 with probability ps. Notice that the probabilities
pb and ps can be seen as design parameters for the filter
that can be tuned depending on the desired properties. For
instance, the lower is pb the more cautious will be the filter
in declaring the presence of an unknown input. Similarly, the
higher is ps the more cautious will be the filter in declaring
that the effect of the unknown input has disappeared. On the
other hand, in accordance with the input model of Section II-
B, we assume that the knowledge of ak adds no information
on ak+1. Summing up, the dynamics of Ak resulting from
the aforestated assumptions can be modeled as a Bernoulli
Markov process described by the following densities:

π(Ak+1|∅) =

{
1− pb, if Ak+1 = ∅

pb p(ak+1), if Ak+1 = {ak+1}

π(Ak+1|{ak}) =

{
1− ps, if Ak+1 = ∅

ps p(ak+1), if Ak+1 = {ak+1}
where p(ak+1) is a PDF representing the prior knowledge on
the unknown input ak+1. Clearly, when the external input is
completely unknown, an uninformative PDF (e.g., uniform
over the input space A) can be adopted for p(ak+1), as
usually done in the literature on unknown input estimation.
As discussed in Section II-B, in the Bayesian framework
this choice leads to a maximum-likelihood estimation of the
unknown input value.

Under the above assumptions, an exact recursion for the
prior density can be obtained, as stated in the following
theorem.

Theorem 2: Given the posterior hybrid Bernoulli density
p(Ak, xk|Zk) at time k of the form (22), fully characterized
by the triplet

(
rk|k, p

0
k|k(xk), p1k|k(ak, xk)

)
, also the predicted

density turns out to be hybrid Bernoulli of the form

p(Ak+1, xk+1|Zk) (38)

=

{
(1− rk+1|k) p

0
k+1|k(xk+1), if Ak+1 = ∅

rk+1|k · p1k+1|k(ak+1, xk+1), if Ak+1 = {ak+1}

with

rk+1|k = (1− rk|k) pb + rk|k ps (39)

p0k+1|k(xk+1) =
(1− rk|k)(1− pb) pk+1|k(xk+1|∅)

1− rk+1|k

+
rk|k(1− ps) pk+1|k(xk+1|{ak})

1− rk+1|k
(40)

p1k+1|k(ak+1, xk+1) =
(1− rk|k) pb pk+1|k(xk+1|∅) p(ak+1)

rk+1|k

+
rk|k ps pk+1|k(xk+1|{ak}) p(ak+1)

rk+1|k
(41)
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where

pk+1|k(xk+1|∅) =
∫
π(xk+1|xk) p0k|k(xk) dxk (42)

pk+1|k(xk+1|{ak}) =
∫∫

π(xk+1|ak, xk) p1k|k(ak, xk) dakdxk.

(43)

Proof: The prediction equation of the Bayes random set filter
is given by the following generalization of (6)

p(Ak+1, xk+1|Zk) (44)

=

∫∫
π(Ak+1, xk+1|Ak, xk) p(Ak, xk|Zk) δAkdxk

= (1− rk|k)
∫
π(Ak+1, xk+1|∅, xk) p0k|k(xk) dxk

+ rk|k

∫∫
π(Ak+1, xk+1|{ak}, xk) p1k|k(ak, xk) δAkdxk

where the set integral definition (9) and (22) have been used.
Then, for Ak+1 = ∅, from (36), (37), and (38), one has

p(∅, xk+1|Zk) = (1− rk|k)(1− pb)
∫
π(xk+1|xk) p0k|k(xk) dxk

+ rk|k(1− ps)
∫∫

π(xk+1|ak, xk) p1k|k(ak, xk) dakdxk. (45)

Next, using (42) and (43), (45) becomes

p(∅, xk+1|Zk) = (1− rk|k) (1− pb) pk+1|k(xk+1|∅)
+ rk|k (1− ps) pk+1|k(xk+1|{ak}). (46)

Analogously, for Ak+1 = {ak+1} we obtain

p({ak+1}, xk+1|Zk) =

[
(1− rk|k) pb pk+1|k(xk+1|∅)

+ rk|k ps pk+1|k(xk+1|{ak})
]
p(ak+1). (47)

Thus, the output of the prediction step given by (45)-(47) is
of the form (38) under the settings (39)-(43).

It is clear from (39) that the system is predicted to be
under off-nominal behavior at time k+ 1 if either an existing
unknown input persists from time k, or a novel external
signal ak+1 starts affecting its dynamics. Similar to the
standard Bernoulli filter, the prediction step of the proposed
filter involves two separate terms, here accounting for the
unknown input birth and input-survival. Notice that, if pb = 0,
ps = 1 and rk|k = 1, the prediction step (38) yields (6),
which is the standard Chapman–Kolmogorov equation for
the system under attack, since from (39)-(41) it follows that
rk+1|k = 1, p0k+1|k(xk+1) = 0, and p1k+1|k(ak+1, xk+1) =
pk+1|k(xk+1|{ak}) p(ak+1).

Remark 1: As it happens in most nonlinear filtering prob-
lems, no exact closed-form solution to the proposed hybrid
Bernoulli filter is admitted. However, for the special class
of linear Gaussian models, this problem can be effectively
mitigated by parameterizing the posterior densities p0k|k(·) and
p1k|k(·, ·) via Gaussian mixtures and by limiting the growing
number of components via simple pruning and merging pro-
cedures (see [33]) to allow for on-line computation. Detailed
formulas of the Gaussian-mixture implementation of the hy-
brid Bernoulli filter (GM-HBF) can be found in [34].

Remark 2: Given the conditional density p(Ak, xk|Zk),
characterized by the triplet

(
rk|k, p

0
k|k(·), p1k|k(·, ·)

)
, the joint

input detection and state estimation problem can be solved
as follows. First of all, we perform unknown input detection
using rk|k from the available current hybrid Bernoulli density
p(Ak, xk|Zk). By using a MAP decision rule, given Zk, the
detector will assign Âk 6= ∅ (the system is under off-nominal
behavior) if and only if Prob(Ak 6= ∅|Zk) > Prob(Ak =
∅|Zk), i.e. if and only if rk|k > 1/2. Then, if the unknown
input has been detected, one can maximize p(Ak, xk|Zk) with
respect to xk and ak. In this way it is possible to obtain a MAP
estimate of xk and a ML estimate of the unknown input ak.

Remark 3: In the paper, the probability pd of receiving the
authentic measurements from sensors is assumed known based
on the thought that this information might be available as an
inherent property of the communication channel which can, for
instance, be characterized from available historical trends. In
the negative, the filter can be modified so as to estimate such a
probability by incorporating an unknown variable, representing
the probability pd, into the augmented state variable (see [35]
for a discussion in the context of multi-Bernoulli filtering).

IV. NUMERICAL EXAMPLE

The effectiveness of the Gaussian-mixture hybrid Bernoulli
filter has been tested by simulating a load altering attack
[36] on the IEEE 14-bus system (Fig. 1) consisting of 5
synchronous generators, 11 load buses, with parameters taken
from [37]. The system dynamics is described by the linearized
swing equation, obtained after Kron reduction [38], modeling
the evolution of each phase angle δi and angular frequency
ωi, i = 1, . . . , 5 at generator buses (q = 10 states). After
discretization (with sampling interval T = 0.01s), the model
of the system takes the form (1)-(2), where the whole state is
measured by a network S of sensors. The DC state estimation
model assumes 1 p.u. (per unit) voltage magnitudes in all buses
and j1 p.u. branch impedance. The system is assumed to be
corrupted by additive zero mean Gaussian white process and
measurement noises with variances σ2

w = 0.01 and σ2
v = 0.01.

At time k = 50 an attack input a = [0.2, 0.1]T p.u. is injected
into the system to abruptly increase the real power demand of
the two victim load buses 3 and 9 with an additional loading
of 21.23% and 33.9%, respectively. This type of attack can
provoke a loss of synchrony of the rotor angles, and hence a
deviation of the rotor speeds of all generators from the nominal
value. We also fixed the following parameters: pb = 0.05,
ps = 0.95, pd = 0.95, pruning and merging thresholds γp =
10−2 and γm = 3 for the Gaussian-mixture implementation.
The guessed distribution of the unknown input was taken as
normally distributed. To get an uninformative prior, we set
p(ak+1) ∼ N (â, P a), with â = [0, 0]T and P a = 105 I2.
The distribution of false measurements κ(·) is modeled as
uninformative (i.e. uniform) over the bounded interval [−5, 5]
by the filter, while the actual extra packets are generated from
a uniform distribution over [−2, 2.5] for the rotor angles and
over [−0.6, 1] for the frequencies. Fig. 2 shows the true and
estimated probability of attack existence (a) and the Root
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Fig. 1: Single-line model of the IEEE 14-bus system. The true
victim load buses 3 and 9 are circled in red.

Fig. 2: Performance of the GM-HBF in terms of unknown
input detection (a), estimation of rotor angles δi, i = 1, . . . , 5
(b), frequencies ωi, i = 1, . . . , 5 (c), and attack signal (d).

Mean Square Error (RMSE), averaged over 1000 Monte Carlo
runs, relative to the rotor angle (b) and frequency (c) estimates.
Fig. 2 (d) shows the RMSE of the estimated components of the
attack input, extracted from p1k|k(a, x). As shown in the results
(a)-(d), the proposed filter succeeds in promptly detecting the
exogenous input altering the nominal power system behavior,
and in being simultaneously resilient to attack signals on
power demand, as well as robust to extra false packets and
undelivered measurements. Fig. 3 (a) provides a comparison
between the true and the estimated values of the two rotor
angles mainly affected by the victim load buses, and clearly
shows how δ1 and δ3 lose synchrony once the load altering
attack enters into action. Nevertheless, the proposed estimator
keeps tracking the state evolution with high accuracy even after
time k = 50, once recognized that the system is under attack.
Finally, Fig. 3 (b) shows the performance of the GM-HBF in
estimating the generator frequencies ω1 and ω3, before and
after the appearance of the unknown input.

Next, we further tested the robustness of the proposed filter
to a possible mismatch between the assumed and the actual

Fig. 3: (a) Estimated vs. true trajectory of rotor angles δj , j =
1, 3. Note that, if |δj | is sufficiently large (i.e., values close
to π/2), the linear small signal approximation significantly
deviates from the nonlinear dynamics of the system, and
hence the assumed dynamic model becomes inaccurate. (b)
Estimated vs. true trajectory of frequencies ω1 and ω3.

Fig. 4: Performance in terms of state (frequencies) and input
reconstruction (after k = 50) under distribution mismatch: ak
generated as a cosine (a), square (b), and sawtooth (c) wave.

distributions of the unknown input and of the extra packets.
In particular, we evaluated the performance of the GM-HBF
estimator via Monte Carlo simulations using different shapes
of time-varying functions for the unknown signal (see [39] for
a similar attack model on power grids). We considered three
different scenarios with ak on the victim load bus 9 generated
by cos, square, and sawtooth functions in MATLAB, with
amplitude α = 2 and angular frequency ψ = 3, respectively.
In contrast, the guessed distribution of the unknown input
was taken as normally distributed in all scenarios. To get an
uninformative prior, we set p(ak+1) ∼ N (â, P a), with â = 0
and P a = 105. For the extra packet injections, recall that the
cardinality distribution is modeled as an uninformative distri-
bution in (13), while the actual number of false measurements
follows a Poisson distribution with average number ξ = 10.
As shown in Fig. 4, the hybrid Bernoulli filter is found to
be robust to possible distribution mismatches, since it can
successfully track the unknown signal, and hence guarantee
solid performance in terms of state estimation even under
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different mismatch conditions involving both the unknown
input and the false measurements. The results about input
detection and rotor angles estimation are omitted since they
are similar to the ones shown in Figs. 2 (a)-(b).

V. CONCLUSIONS

This note proposed a general Bayesian framework to solve
state estimation for (linear/nonlinear) systems in the face of
switching unknown inputs and extra packet injections. Random
finite sets have been exploited in order to model the switching
nature of the exogenous signals as well as the possible pres-
ence of false measurements. A Bayes-optimal hybrid Bernoulli
filter has been proposed for jointly detecting the unknown
inputs and estimating the system state. The promising results
exhibited in a realistic power system application, even under
different distribution mismatch conditions, motivate future
work on hybrid Bernoulli filtering, such as worst-case per-
formance analysis and the extension to distributed settings.
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